18 research outputs found

    Identification of continuous-time model of hammerstein system using modified multi-verse optimizer

    Get PDF
    his thesis implements a novel nature-inspired metaheuristic optimization algorithm, namely the modified Multi-Verse Optimizer (mMVO) algorithm, to identify the continuous-time model of Hammerstein system. Multi-Verse Optimizer (MVO) is one of the most recent robust nature-inspired metaheuristic algorithm. It has been successfully implemented and used in various areas such as machine learning applications, engineering applications, network applications, parameter control, and other similar applications to solve optimization problems. However, such metaheuristics had some limitations, such as local optima problem, low searching capability and imbalance between exploration and exploitation. By considering these limitations, two modifications were made upon the conventional MVO in our proposed mMVO algorithm. Our first modification was an average design parameter updating mechanism to solve the local optima issue of the traditional MVO. The essential feature of the average design parameter updating mechanism is that it helps any trapped design parameter jump out from the local optima region and continue a new search track. The second modification is the hybridization of MVO with the Sine Cosine Algorithm (SCA) to improve the low searching capability of the conventional MVO. Hybridization aims to combine MVO and SCA algorithms advantages and minimize the disadvantages, such as low searching capability and imbalance between exploration and exploitation. In particular, the search capacity of the MVO algorithm has been improved using the sine and cosine functions of the Sine Cosine Algorithm (SCA) that will be able to balance the processes of exploration and exploitation. The mMVO based method is then used for identifying the parameters of linear and nonlinear subsystems in the Hammerstein model using the given input and output data. Note that the structure of the linear and nonlinear subsystems is assumed to be known. Moreover, a continuous-time linear subsystem is considered in this study, while there are a few methods that utilize such models. Two numerical examples and one real-world application, such as the Twin Rotor System (TRS) are used to illustrate the efficiency of the mMVO-based method. Various nonlinear subsystems such as quadratic and hyperbolic functions (sine and tangent) are used in those experiments. Numerical and experimental results are analyzed to focus on the convergence curve of the fitness function, the parameter variation index, frequency and time domain response and the Wilcoxon rank test. For the numerical identifications, three different levels of white noise variances were taken. The statistical analysis value (mean) was taken from the parameter deviation index to see how much our proposed algorithm has improved. For Example 1, the improvements are 29%, 33.15% and 36.68%, and for the noise variances, 0.01, 0.25, and 1.0 improvements can be found. For Example 2, the improvements are 39.36%, 39.61% and 66.18%, and for noise variances, the improvements are by 0.01, 0.25 and 1.0, respectively. Finally, for the real TRS application, the improvement is 7%. The numerical and experimental results also showed that both Hammerstein model subsystems are defined effectively using the mMVO-based method, particularly in quadratic output estimation error and a differentiation parameter index. The results further confirmed that the proposed mMVObased method provided better solutions than other optimization techniques, such as PSO, GWO, ALO, MVO and SCA

    Using adaptive safe experimentation dynamics algorithm for maximizing wind farm power

    Get PDF
    This research presents a model-free strategy for increasing wind farm power generation based on the Adaptive Safe Experimentation Dynamics Algorithm (ASEDA). The ASEDA method is an improved version of the Safe Experimentation Dynamics (SED) algorithm that modifies the current tuning variable to respond to the changes in the objective function. The convergence accuracy is predicted to be enhanced further by adding the adaptive element to the modified SED equation. The ASEDA-based technique is used to determine the ideal control parameter for each turbine to maximize a wind farm's total power generation. A single single-row wind farm prototype with turbulence coupling among turbines is employed to validate the proposed approach. Simulation findings show that the ASEDA-based approach provides more total power generation than the original SED technique

    Modified multi verse optimizer for solving optimization problems using benchmark functions

    Get PDF
    The hybrid version of multi-verse optimizer (MVO) namely the modified multi-verse optimizer (mMVO) is developed in this paper by modifying the position updating equation of MVO. Here two modification is proposed in the standard MVO. Firstly, an average position selection mechanism is proposed for solving the local optima problem and secondly, the MVO algorithm is hybrid with another metaheuristics algorithm namely the Sine Cosine Algorithm (SCA) for better balancing the exploration and exploitation of standard MVO algorithm so that it can improve its searching capability. The proposed version of MVO has been evaluated on 23 well known benchmark functions namely unimodal, multimodal and fixed-dimension multimodal benchmark functions and the results are then verified with the standard MVO algorithm. Experimental results demonstrate that the proposed mMVO algorithm gives much better improvement than the standard MVO in the optimization problems in the sense of preventing local optima and increasing the search capability

    Modified multi-verse optimizer for nonlinear system identification of a double pendulum overhead crane

    Get PDF
    This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms

    Metaheuristics algorithms to identify nonlinear Hammerstein model: A decade survey

    Get PDF
    Metaheuristics have been acknowledged as an effective solution for many difficult issues related to optimization. The metaheuristics, especially swarm’s intelligence and evolutionary computing algorithms, have gained popularity within a short time over the past two decades. Various metaheuristics algorithms are being introduced on an annual basis and applications that are more new are gradually being discovered. This paper presents a survey for the years 2011-2021 on multiple metaheuristics algorithms, particularly swarm and evolutionary algorithms, to identify a nonlinear block-oriented model called the Hammerstein model, mainly because such model has garnered much interest amidst researchers to identify nonlinear systems. Besides introducing a complete survey on the various population-based algorithms to identify the Hammerstein model, this paper also investigated some empirically verified actual process plants results. As such, this article serves as a guideline on the fundamentals of identifying nonlinear block-oriented models for new practitioners, apart from presenting a comprehensive summary of cutting-edge trends within the context of this topic area

    PID Tuning Method Using Chaotic Safe Experimentation Dynamics Algorithm for Elastic Joint Manipulator

    Get PDF
    This paper proposed the chaotic safe experimentation dynamics algorithm (CSEDA) to regulate angular tracking and vibration of the self-tuning PID controller for elastic joint manipulators. CSEDA was a modified version of the safe experimentation dynamics algorithm (SEDA) that used a chaos function in the updated equation. The chaos function increased the exploration capability, thus improving the convergence accuracy. In this study, two self-tuning PID controllers were used to regulate the rotating angle tracking and vibration for elastic joint manipulators in this control challenge. The suggested self-tuning PID controller's performance was evaluated in angular motion trajectory tracking, vibration suppression, and the pre-determined control fitness function. A self-tuned PID controller based on CSEDA could achieve superior control accuracy than a traditional SEDA and its variants

    Prostate cancer prediction using feedforward neural network trained with particle swarm optimizer

    Get PDF
    Prostate cancer has been one of the most commonly diagnosed cancers in men and one of the leading causes of death in the United States. Because of the complexity of the masses, radiologists are unable to diagnose prostate cancer properly. Many prostate cancer detection methods have been established in the recent past, but they have not effectively diagnosed cancer. It is worth noting that most current studies employ machine learning techniques, especially when creating prediction models from data. Despite its possible benefits compared to standard statistical analyses, these methods break down the problem statements into different parts and combine their results at the final stage. This makes complexity, and the prediction accuracy not consistently high. In this paper, the Feedforward Neural Networks (FNNs) is trained by using Particle Swarm Optimizer (PSO) and the FNNPSO framework is applied to the prediction of prostate cancer. PSO is one of the novel metaheuristics and frequently used for solving several complex problems. The experimental results are evaluated using the mean, best, worst, and standard deviation (Std.) values of the fitness function and compared with other learning algorithms for FNNs, including the Salp Swarm Algorithm (SSA) and Sine Cosine Algorithm (SCA). The experimental finding shows that the FNNPSO framework provides better results than the FNNSSA and FNNSCA in FNN training. Moreover, FNN trained with PSO is also shown to be better accurate than other trained methods to predict prostate cancer

    Robust PID tuning of AVR system based on indirect design approach-2

    Get PDF
    The Automatic Voltage Regulator (AVR) has been developed with the automated purpose of maintaining voltage stability for synchronous generators. This structure is often controlled by installation of the Proportional-Integral-Derivative (PID) controller. Contemporary heuristic approaches further inspired scholastic pursuits which advocate numerous innovative PID-based optimization techniques. Nevertheless, offsetting of such benefits and precision on disproportionate theoretical outcome by existence of modelling errors and uncertainties has necessitated continuous effort in tuning the PID controller. Considering possible jeopardizing of operational effectiveness and consistency through manualized optimization of controller's parameters, the current study essentially secured the effectiveness of a PID-controlled AVR system through online tuning. The adopted indirect design technique emphasized exclusive optimization of frequency shift constant of a formerly optimized PID controller as employed within an AVR structure. Enhancement of control efficacy and operation is achievable through revised parameters in the earlier PID controller from an updated frequency shifted constant. Compatibility of the introduced optimization mechanism was contrasted against parameters of the formerly optimized PID controller on the account of maximum sensitivity, gain and phase margins. Conducted simulations demonstrate substantial enhancement in performance of AVR structure with PID con-troller through parametric refining of the introduced mechanism

    Identification of the Thermoelectric Cooler using hybrid multi-verse optimizer and Sine Cosine Algorithm based continuous-Time Hammerstein Model

    Get PDF
    This paper presents the identification of the ThermoElectric Cooler (TEC) plant using a hybrid method of Multi-Verse Optimizer with Sine Cosine Algorithm (hMVOSCA) based on continuous-time Hammerstein model. These modifications are mainly for escaping from local minima and for making the balance between exploration and exploitation. In the Hammerstein model identification a continuous-time linear system is used and the hMVOSCA based method is used to tune the coefficients of both the Hammerstein model subsystems (linear and nonlinear) such that the error between the estimated output and the actual output is reduced. The efficiency of the proposed method is evaluated based on the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's rank test. The experimental findings show that the hMVOSCA can produce a Hammerstein system that generates an estimated output like the actual TEC output. Moreover, the identified outputs also show that the hMVOSCA outperforms other popular metaheuristic algorithms

    Feature selection and prediction of heart disease using machine learning approaches

    Get PDF
    Heart Disease (HD) is the world's most serious illness that seriously impacts human life. The heart does not push blood to other areas of the body in cardiac disease. For the prevention and treatment of cardiac failure, accurate and timely diagnosis of heart disease is critical. The diagnosis of cardiac disease has been considered via conventional medical history. Non-invasive approaches like machine learning are effective and powerful to categorize healthy people and people with heart disease. In the proposed research, by using the cardiovascular disease dataset, we created a machine-learning model to predict cardiac disease. In this paper, it is capable of recognizing and classifying the heart disease patient from healthy people by using three standard machine learning algorithms: Random Forest (RF), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). In addition, the Area Under Curve (AUC) value is calculated for each classification algorithms. In the proposed scheme, we also used the feature selection algorithm to reduce dimensions over a qualified heart disease dataset. After that, the whole structure for the classification of heart disease has been created. On complete features and reduced features, the performance of the proposed approach has been verified. The decrease in features affects the accuracy and time of execution of the classifiers. With the selected features, the highest classification accuracy is obtained for the KNN algorithm is about 93%, with a sensitivity is 0.9750 and specificity is 0.8529. Therefore, with the complete features, the classification accuracy is about 91%
    corecore